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On Liouville integrability of zero-curvature equations and the 
Yang hierarchy? 

Tu Gui-zhang 
Computing Center of Academia Sinica, Beijing 100080, People's Republic of China 

Received 13 June 1988 

Abstract. Sufficient conditions for a zero-curvature equation U, - V, +[U, V] = 0 being 
Liouville integrable are investigated. In the case that the equation is integrable an explicit 
formula of the Poisson bracket { H ( h ) ,  H ( p ) }  for Hamiltonians H is proposed. The Yang 
hierarchy is derived and shown to be Liouville integrable. 

1. Introduction 

An elegant geometrical theory of finite-dimensional Hamiltonian systems has been 
built since the late 1960s [ 1,2]. The beautiful Liouville-Arnold theorem represents a 
landmark of the theory. According to this theorem a Hamiltonian system with n 
degrees of freedom is completely integrable if it possesses n integrals which are 
involution in pairs. Much progress has been made in the last twenty years in extending 
this theorem to infinite-dimensional systems. However, there is still a long way to go. 
Accordingly an authoritative definition of complete integrability of an infinite- 
dimensional system is not available in current literature. In this paper we adopt two 
working definitions which are nowadays quite popular. First we call a nonlinear 
evolution equation ( NLEE) Lax integrable if it admits a zero-curvature representation: 

U , - V x + [ V ,  V ] = O  

where U, V are matrices belonging to a Lie algebra. This definition is extensively 
adopted in soliton theory (see, e.g., [3]). Secondly we call an NLEE Liouville integrable 
[4] if it can be written as a generalised Hamiltonian equation U, = J 6 H /  6u with a well 
defined Poisson bracket { , }, and it possesses an infinite number of conserved densities 
{ H , }  which are involution in pairs { H,,, H,} = 0. Both of the above two definitions 
are formal. However, most of the known systems, which are integrable in either of 
the above-mentioned senses, do present peculiar features which make them much more 
like finite-dimensional integrable systems. Two problems remain open. 

(i)  A full description of those matrices U for which there exists a hierarchy of 
non-trivial zero-curvature equations 

- V'"'+ [ U, V'"'] = 0. (1.2) 

(ii) A formulation of sufficient and/or necessary conditions under which the above 
zero-curvature equations are Liouville integrable. 

t Supported by National Science Foundation through Nankai Institute of Mathematics. 
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The first problem amounts, in fact, to one of generating Lax integrable systems. 
This is a central, difficult, subject in soliton theory. The aim of the present paper is 
to give a partial answer to the two above important problems. First, we propose a 
model class of matrices U = U(A) (2.17). Second, we give a sufficient condition under 
which there exists matrices V ( n )  such that the hierarchy of equations (1.2) represent 
non-trivial evolution equations. Third, we formulate sufficient conditions for this 
hierarchy to be Liouville integrable. The key result is an explicit formula for the 
Poisson bracket (3.17). We also propose a simple method for proving the locality of 
the hierarchy of equations (1.2). 

This paper is divided into five sections. The next section contains a brief description 
of basic notions. After doing that we explain the motivation of the paper, and establish 
the main results in § 3. Two illustrative examples, the Giachetti-Johnson (GJ) and the 
Jaulent-Miodek ( J M )  hierarchies, are given in 0 4. Section 5 is devoted to the derivation 
of the Yang hierarchy and the proof of its Liouville integrability. 

2. Preliminaries 

2.1. Basic notation 

Let G be a matrix Lie algebra over the complex field @, and 6 = GO@(,+, A - ' )  be its 
loop algebra, where @ ( A ,  A - ' )  is the set of Laurent polynomials in A. The gradation 
of 6 is taken by 

Let g E 6 and g = Xn g,, deg g, = n, be its gradation decomposition. We set 
deg(xC3A") = n X E  G. (2.1) 

g + =  c gn. 
n s o  

The scalar product of two vectors F = ( F , )  and F'  = ( F : )  is denoted by 

F -  F' = c F,Fi. (2.3) 

A . B = A,B, = ( A T ,  B)  (2.4) 

I 

In the same way the scalar product of two matrices A = ( A , l )  and B = ( B y )  is defined by 

y 

where T represents the transpose and 

( A ,  B )  = Tr(AB) = A,B,,. 
9 

Let S be the Schwartz space over R = (-CO, CO), S p  = SO. . .OS ( p  times). The 
operator 8 = d/dx introduces an equivalence relation among elements of S p :  

f = g ( m o d d ) e g h  such that f - g  = a h  f, g, h E sp. (2.6) 
The equivalence class which contains f is denoted by [SI 1 f d x  = ( f + d h l h  E S p ) .  (2.7) 

In the following discussion the algebra 6 will be extended to 
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Adx, for A, B E  The equivalence relation A =  B(moda) and the equivalence class 
G ( S ) ,  are defined in a similar way. 

2.2. Generalised Hamiltonian equations 

Let 
T u = u ( x ,  t )  = (UI,. * . , u p )  

be a smooth vector function which belongs to S p  for any fixed f .  A linear operator 
J = J ( u ) :  Sp + S p  is called symplectic (or implectic [ 6 ] ,  Hamiltonian [ S ,  71) if ( i )  it is 
skew-symmetric with respect to the inner product 

F, G E  S p  (2 .10)  

i.e. 

( JF ,  G ) = - ( F ,  J G ) ;  (2 .11)  

and (ii) it holds that 

( J ' ( u ) [ J f J g ,  h)+(J ' (u ) [ Jg lh , f )+ ( J ' (u ) [ Jh l f ,  g )  = O  (2 .12)  

J ' ( u ) [ f l =  (d /ds ) J (u+  & f ) l , = o .  
for any f, g, h E S p ,  where 

It is shown that [6], if J is symplectic, then the bracket 

{ H ,  Z } = ( 6 H / 6 u ,  J 6 1 / 6 ~ ) =  ( ( 6 H / 6 u )  * ( JSZ/6u))  dx (2 .13)  

is a well defined Poisson bracket between scalar functions H, I E S. In this case the 
equation 

5 
u, = J 6 H / 6 u  (2 .14)  

is called a (generalised) Hamiltonian equation with the Hamiltonian H, where 

( 2 . 1 5 a )  

(2.15 b )  

stands for variational derivatives. 

2.3. An isospectral problem 

Consider the isospectral problem 

*x = A ) +  (2 .16)  

with 

U =  U ( u , A ) = e , ( A ) + u , e , ( A ) + .  + - + u p e p ( A )  (2 .17)  

where U = ( u l ,  . . . , u p )  E S p  and eo( ,+) ,  . . . , e p ( A )  E G. We suppose that e o ,  e , ,  . . . , ep 
are linearly independent, and 

E o > O  E o  ' E ,  i =  1 , .  . . , p  (2 .18)  

- 
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where = deg ei, i = 0, 1 ,  . . . , p .  With the above assumptions we can define the rank 
for d, ui, A and A E G in such a way that [8] (i) if ab makes sense for two entities a 
and b, then rank(ab) = rank( a )  +rank( b); (ii) the matrix U is of homogeneous rank, 
i.e. rank( eo) = rank( ulel)  = . . . = rank( upep). To this end we take 

rank(A) = deg( A) A €  G, (2.19a) 

rank( A ) = deg( AA ) - deg( A) (2.19b) 

rank( U;) = - E ,  i = l , . .  . , p  ( 2 . 1 9 ~ )  

rank(8) = (2.19d) 

rank@) = 0 p = constant, p # 0. (2.19e) 

We observe that (2.196) is well defined, because we have deg(AA)+deg(B)= 
deg(A)+deg(AB) =deg(A[A, BI). Hence deg(AA)-deg(A) =deg(BA)-deg(B), and 
the right-hand side of (2.19b) is indeed independent of A E e, 

2.4. A scheme for generating Lax integrable systems 

We have proposed in [9] a scheme for generating Lax integrable systems. Let an 
isospectral problem be given by (2.16) and (2.17). First, we take a solution V =  V(A) 
of the equation 

V x ( A ) = [ U ( A ) ,  V(A)l.  (2.20) 

v(")= (A"v)++A,  (2.21) 

v?'-[u, ~ ' " ' ] = @ e , + .  . . + @ e , .  (2.22) 

Second, we search for A,, E 6 such that, for 

it holds that 

This requirement yields a hierarchy of evolution equations 

U,,,(A)= V ? ' ( A ) - [ U ( A ) ,  v"'(A)l (2.23) 

where we use the time variables t, with subindices, as suggested in [lo], to emphasise 
the special choice V =  V'").  

We shall always search for solutions V(A) of (2.20) which are of the form 

V(A)= 1 V,,(u)A-" 

with Vo = constant # 0. Then by definition (2.2), 

n 30 

(A"V(A))+ = VJn-'. 
n 2 i a 0  

(2.24) 

(2.25) 

To write the equations more concisely, we adopt in subsequent sections, unless 
otherwise specified, the following notations. For matrices F ( A )  E G ( S )  we write 

In the same way we write 

(2.27) 
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2.5. The trace idenrity 

We proved in [11,12] the following result. Suppose that for any integer m the solution 
V of (2.20), which is of rank m, is unique up to a constant multiplier. Then for any 
solution V of homogeneous rank, there exists a constant y such that 

(s/Sui)(V, aU/ah)= (h -Y(a /ah )hY) (V ,au /au , ) .  (2.28) 

We shall suppose in subsequent sections that the above-mentioned condition which 

I =(V ,au /ah>  (2.29) 

leads to (2.28) is fulfilled. In this case we set 

and define a scalar H = H ( A )  by the equation 

( A - ' ( a / d A ) A Y ) H  = 1. 

The trace identity (2.28) then yields that 

aH/sui =(v,au/aui). 
Let { H,,} be defined by 

H ( A ) =  1 H,,A-". 
I I B O  

(2.30) 

(2.31) 

(2.32) 

We shall show in the next section that the set { H,}  provides, under certain conditions, 
conserved densities of the hierarchy of equations connected with the isospectral 
problem (2.16) and (2.17). 

3. Liouville integrability of zero-curvature equations 

First we explain the motivation of the present research. It is known that for most 
isospectral problems (2.16) and (2.17) the corresponding hierarchy (1.2) consists of 
bi-Hamiltonian systems, i.e. each equation in the hierarchy can be written as a gen- 
eralised Hamiltonian equation in two different ways: 

urn = J 6 H n / 6 u  = J1 SH,,-,/Su 

where J, J1 and their linear combination aJ + pJ1 are symplectic operators for constants 
a and p. In this case, if J is invertible then, by setting L = J , J - ' ,  we have 

ura = JGHJSu = JLSH,,_,/Gu 

and thus 

urn = JL"f( U )  

for some function J: The operator L is called a recursion operator for the hierarchy 
(1.2), and its conjugate L* is called a hereditary symmetry [13] that plays an important 
role in generating symmetries of the hierarchy of equations. There was even a long- 
standing conjecture that all recursion operators derived from isospectral problems are 
conjugates of hereditary symmetries. By making use of the trace identity (2.28) and 
the skew-symmetry of J and J ,  = JL, i.e. 

J * = - J  JL = L*J 
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we had successfully established in [ 81 the Liouville integrability of various hierarchies 
of equations (1.2). To our surprise, when we try to apply the same method to the 
Giachetti-Johnson (GJ) hierarchy (see 9 4) and the Yang hierarchy (see 9 5 )  great 
difficulty arose: we did find J and L such that J* = -J  and JL = L*J, but J is not 
symplectic; we can also find J and L such that J is symplectic and the whole hierarchy 
can be written as U, = JGH,/Su = JL"f(u) .  However JLZ L*J. This dilemma forces 
us to think that perhaps GJ and Yang hierarchies might be counterexamples to the 
conjecture. We then decided to search for an alternative approach. Finally we suc- 
ceeded in establishing an explicit formula for the Poisson bracket { H ( A ) ,  H ( p ) } =  
(d/dx)P(A, p )  (see (3.17)) that implies that { H " ,  H,} = O(mod a) for n, m 2 0, as needed 
by the Liouville integrability. We then realised that this formula also applies to the 
bi-Hamiltonian systems as well. Therefore the formula for Poisson brackets, together 
with the trace identity, provide us effective tools for establishing the Liouville integrabil- 
ity of general zero-curvature equations. In a subsequent paper we successfully proved 
that the stationary zero-curvature equation (2.20) can be cast in completely integrable 
Hamiltonian system. This result paves a way for constructing a large class of finite- 
dimensional integrable Hamiltonian systems. We begin with the following simple 
propositions. 

Proposition 1 .  Let V =  V(A) be a solution of (2.20) and (2.24), and (A"V)+ be defined 
by (2.25). Then it holds that 

(3.1) 

ProoJ: We have 
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By using the above proposition and the concise notation (2.26), the hierarchy of 
equations (2.23) can be put together as follows. 

where the concise notation (2.26) has been used and 

A n K n .  
n a o  

Proof. By (2.26), (2.23) and (2.21) we have 

& ( A ;  P )  = c U t n ( A ) P - n  
n a o  

= C (Vy'(A)-[U(A), V " ) ( A ) ] ) p - "  
n a o  

(3.4) 

which, together with (3.2), imply the desired conclusion. 
The following theorem is an immediate consequence of (3 .3 ) .  

Theorem 3. Let the matrix U ( A )  be defined by (2.17). If there exists a matrix A ( @ )  
and p independent functions fl(w, U), . . . ,fp(p, U )  such that 

[ P ( U ( P ) -  U ( A ) ) / ( P - A ) ,  V ( I L ) I + A , ( P ) - [ U ( ~ ) , A ( P ) I =  .L(A u)e i (A) -  
p z i a l  

(3.5) 

Then one can relate the isospectral problem (2.16) with the following hierarchy of NLEE: 

(3.6) 4" = ( f i n ,  . * . , f p n I T  
where U is given by (2.9) andJ, are defined by 

J ( P ,  U )  = c . L n ( U ) P - " .  (3.7) 
n a o  

We observe that by (2.27) the hierarchy (3.6) can be written as 

( 4 P ) ) r  = f ( u )  
where f (u )  = ( f l , .  . . ,fp)T. 

The following proposition is essential. 

Proposition 4. Let the matrix U be defined by (2.17). Suppose that there exist matrices 
V and which satisfy, respectively, (2.20) and 

U,= V x - [ U ,  VI .  (3.9) 

Then it holds that 

(3.10) 
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Proofi Let b l ,  . . . 
[bi ,  bj]=Zk Cibk 
eu(A)€C(A, A - ' ) .  

, b, be a base of G and the structure constants Ci  be defined by 
. Suppose that V = Z  vibi, v=Z fiibi and e i=ZNsja l  eij(A)bj,  where 

Taking U,,= 1 for convenience we then have 

ij. = u,e.. U = iijbj 1 IJ 

Naja1 pz=iaO 

and 

[U,  VI = (e  Gibi, 
I 

which, along with the suppositions (2.20) and (3.9), give us 

vkc = Ckfj.v. v ' I  c k r =  0 k - c  c",a,fij. 
ij ij 

Let Kij be defined by Kij = (bi ,  bj). We observe that K ,  = Kji and 

KiICjk (bi, [bj, bkl) = (bj, [bkr biI) 
I 

= c K j / c  L, = -c Kj /c  i k .  
I I 

Hence 

The proof is thus completed. 

Proposition 5. Let the matrix U, the corresponding hierarchy and the scalar function 
H ( A )  be defined, respectively, by (2.17), (2.23) and (2.30). Then it holds that 

z (SH/ a U i ) ( U i  ( P  ) t  = ( V(A  1, P V ( P  )/ ( P  - A ) + A(P )> (3.11) 
I 

and 
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Boo$ By (2.31), (2.27), proposition 4, (3.1) and (3.4), we see that 

( ~ ~ / ~ ~ i ) ( ~ i ( ~ ) ) ~  = (v, au/aui ) (u i ) t , ,p -"  
I ni 

= c (v, V(n))xp-n 
n 

= C ( V ,  ( h n V ) + + A n ) K n  

= (V(A 1, P V ( P ) / ( P  - A )  + A(p) )x  

n 

which proves (3.11). To prove (3.12) we write for convenience 

U = U ( A )  V =  V(A) U'= U ( p )  V ' =  V ( p ) .  (3.13) 

Then we have 

( v, V')X = ( v x ,  V') + ( v, v:) 
= ([ U, VI, V ' )  + ( v, [ U' ,  V']) = ( U - U ' ,  [ v, VI]) 

which implies (3.12) and the proof is completed. 

Here, and in the following, to simplify the notation we shall always write f ' = f ( p )  if 
f = f ( A ) .  Thus, for example, 

a = a ( A )  b = b ( A )  c = c(A) H = H ( A )  

a '=  a ( p )  b '= b ( p )  c ' =  c ( p )  H ' =  H ( p )  
(3.14) 

and so on. 
Suppose now that there exists an operator J :  S p  + S p  such that 

J A  k ( (  V ,  a U / a u , ) ,  . . . , (V, a Ulau,))' = ( f i (A ,  U), . . . , & ( A ,  U))' 

where f; are defined by (3.6) or (3.8). Then the left-hand side of (3.11) is 

(3.15) 

c ( 6 H / S u , ) ( u , ( p ) ) ,  = ( 6 H / S u ) ( f ( p ,  U)) 
I 

= p k ( S H / 6 u ) ( J [ (  V', aU'/au,)]) 

= p k (  G H / S u ) ( J S H ' /  Su).  (3.16) 

Thus we deduce the following. 

Proposition 6. Under the supposition (3.15) we have 

p k ( 6 H ( h ) / 6 u ) ( J S H ( C L . ) / 6 u )  = (V(A) ,  CLV(P)/(P - A )  + A ( P ) ) x  (3.17) 

and consequently 

{ H ( A ) ,  H ( p ) }  = ( S H ( A ) / S u ) ( J 6 H ( p ) / S u )  dx = O .  (3.18) J 
That is, the set {H,}  are involution in pairs with respect to { , }, 

{Hm,Hn}=O Vm, n 2 0  (3.19) 

where {H,}  are defined by (2.32). 
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We observe that by (3.16) the hierarchy (3.8) takes the form 

(Ub)), = J s ( p k H ( d ) / S U  

or equivalently 

Ur,, = J a H n + k (  U)/ 6U- 

(3.20) 

(3.21) 

Furthermore by (3.19) we have 

( H m ( u ) ) r n  = { H m ,  H n } = O *  

Hence {H,,,} are common conserved densities of the hierarchy of equations (3.21). 

The following theorem gives a summation of the above propositions. 

fieorem 7. Let the isospectral problem be given by (2.16) and (2.17) and let V be a 
solution of (2.20). Suppose that (i)  equation (3.5) holds for a matrix A ( p )  and p 
independent functions f,(p, U), . . . ,fp(p, U); (ii) the operator J defined by (3.15) is 
symplectic. Then we have the following conclusions. 

( a )  The scalar function H ( h ,  U )  defined by (2.30) satisfies (2.31). 
( b )  The evolution equations (3.6) can be written in Hamiltonian form (3.21). 
(c) The formula (3.17) for Poisson bracket holds. 
( d )  The hierarchy of equations (3.21) are Liouville integrable and the set {H,} 

constitutes the common set of infinitely many conserved densities which are involution 
in pairs. 

It is known that for most isospectral problems (2.16) and (2.17), the hierarchy 
(3.21) can be written in the form 

(3.22) 

where g E S and L is an operator which is usually an integro-differential operator. 
Moreover, the conjugate of L, denoted by L*, is a hereditary symmetry [13]. 

There is a peculiar and intriguing thing, which puzzled me for some years, that 
equations (3.22) are usually local, i.e. they are pure differential equations in spite of 
the fact that L is actually non-local. To prove this fact different authors used different 
techniques (see, e.g. [ 14-16]). However no unified and satisfactory explanation is 
proposed in the literature so far as we know. We find that the following elementary 
proposition is very useful to establish the above-mentioned local property. 

Proposition 8. Let V =  V ( h ,  U )  be a solution of (2.20). Then we have 

Ur,, = JL"g( U 1 

(d/dx)(det V ( h ,  U ) )  = 0 .  (3.23) 

Pro05 Let V = ( V I ) ,  U = ( UjI)  be N x N matrices and SN be the set of all permutations 
of ( 1 , 2 , .  . . , N). By supposition we have 

v j x  = E  ( u,kvkj - K k u k j ) '  

Hence 

(det = C v l o ( 1 ) v 2 u ( 2 ) ~ ~ ~  V N u ( N ) ) x  
U € S N  

= C ( - l ) ' ( v l u ( l ) . . .  ~ - l , u ( ~ - - l ) ~ ~ ~ ~ k ~ k o ( ~ ) ~  v k U k u ( i ) )  
t k o  

( v+l.o(,+ll . . . V N u ( N l )  = (det v)  C ( U,, - ~ u ~ , l o ~ L ~ )  = 0. 
I U  
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The special case that V ~ s l ( 2 )  is of particular interest. In this case we have the 
next proposition. 

Proposition 9. Let 

V(A, U )  = [: = c V,(u)A-" 
- a  n a o  

be a solution of (2.20). Suppose that (i) a, = a = constant # 0, and bo and co are local; 
(ii) b,+, and c,,+~ can be obtained from b,, ci and a, for i < n by algebraic and differential 
manipulations. Then all ai, bi and ci are local. 

Proof: By proposition 9 we have 

a*+  bc = p = constant. 

Therefore 

(3.24) 

n - l a i a l  

which shows if bi,  ci (is n )  and a, (is n - 1) are local then a, is also local. Now by 
(i)  a,, bo and c, are local and by (ii), if b,, ci, a, are local for i s  n then bntl and c ,+~  
are local. An obvious induction on n thus completes the proof. 

4. Two examples 

4.1. Giachetti- Johnson (GJ) hierarchy 

Let G = sl(2) with the base 

e = [ o  0 1  0] /= [  0 0  3 h = [ '  ' 1 3  

1 0  0 - 1  

Consider the isospectral problem (2.16) [ 171 with 

U = -Ah + qe+ rf+sh 

(4.1) 

(4.2) 

where u1 = q ( x ,  t ) ,  u2 = r ( x ,  t )  and u3 = s(x, t )  represent three potentials. Let 

V = ah + be + cf (4.3) 

be a solution of (2.20).  
To derive the corresponding hierarchy of equations we take 

A b )  = S ( P ) ~ .  

[ P ( U ( A ) -  U ( P ) ) I ( A  - -PL  V(P)I = [-PA, b ' e+c ' f l  

Then 

= -2pb'e + 2pclf 

and 

A ~ ( ~ ) - [ u ( A ) , A ( ~ ) l = ~ ~ h - [ g e + ~  S'hl 

= S k h  + 2 q  S'e - 2 r  Slf: 
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Hence we have 

fI(p, u)=2qSf -2pb '  

qr, = -2bn+i + 2qSn rr,, = 2 ~ , + ~  -2rS, Srn = Snx. (4.4) 

41, = -26, + 1 + 2qan + 1 r,, =2~ ,+1-2 ra ,+~  Sf" = an+1x. (4.5) 

(e,f) = 1 

f2(p, U )  = -2rS'+ 2 4  f X l l . 9  U )  = 8: 

and by theorem 7 the desired hierarchy is 

Taking in particular S '= pa' or S ,  = U,+, the above hierarchy (4.4) reduces to 

To write the above hierarchy of equations in Hamiltonian forms we observe that 
(h, h )  = 2. 

Hence 
( V ,  a U / a q )  = (ah + be + cf, e) = c 

(V,aU/ar)= b ( V ,  a u / a s )  = 2a. 

It is easy to verify that 
J (p (c ' ,  b', 2 ~ 2 ' ) ~ )  = (-2pb'+2pqaf,  2pc'-2pra ' ,  pa;) (4.6) 

where 
0 -2 q 

(4.7) 

which is, as is easily seen, a symplectic operator [17]. Therefore by theorem 7 the 
above hierarchy (4.5) takes the form 

ufn = JSH, ,+ , /Su 

with 
(4.8) 

SHISu = (c,, b,, 2a,) (4.9) 
and equations (4.8) are Liouville integrable. The generating function H ( A ,  U )  of H, 
can be calculated from the equation 

( A - Y ( ~ / ~ A ) A  Y ) ~ ( ~ )  = ( V, a ~ / a ~ ) .  
Since ( V ,  d U / d A )  = -2a, we see that H,+, = 2an+,/(n + 1 - y ) .  To fix the constant y 
we observe that from (4.9,  (4.6) and (4.8) we have 

J(a/  Su)[2an+J(n + 1 - r>l= (-2bn+i + 2qan+, ,2cn+1- 2rani1, a n + l x ) .  

Setting in this equation n = 0 we see that y = 0. Therefore 

H,+,  = 2an+2/(n + 1). (4.10) 
We note furthermore that from (2.20) one deduces that 

a, = CY = constant 

2b,+, = -bnx + 2sb, + 2qa, 2c,+] = c,,+2scn -2ra,. 
Hence by proposition 9 all equations (4.8) are pure differential equations. 

The typical equation in the hierarchy (4.8) is [18] 

= J(S/Su)[(qr, - rqx)/2+4qrs]. 
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Remark As a verification of (3.17) we calculate that 

(V(A), V ( p ) )  = ( a h +  be+ cf, a’h + b’e+ cy) =2aa’+ bc‘+ b’c 

(V(A), A(p)) = ( a h  + be+ cf, pa’h)  = 2paa’. 

Then (3.17) is, in the present case, 

(c, 6, ~ u ) ~ J ( u ’ ,  b’, 2 ~ ‘ ) ’ = [ ( 2 ~ ~ ’ + b c ‘ + ~ b ’ ) / ( p  - A ) + ~ u u ’ ] ,  (4.11) 

It is easy to verify from (4.7) that (c, b, ~ u ) ~ J (  a’, b’, 2 ~ ’ ) ~  = 2( bc’- cb‘) + ~ ( U U ’ ) , .  

(4.12) 

which can be verified directly by using (4.7) and (2.20). 

Hence (4.1 1 )  reduces to 

2( A - p ) (  b’c - bc’) = 2( UU’), + (cb‘+ bc‘), 

or by (4.9) 

- p ) [ ( S H ( A  ) ISq) (GH(p)ISr )  - ( S H ( A  ) l S r ) ( ~ H ( p ) / S q ) l  

= [(f)( a H ( A  / Ss)(SH(p I /  8s) + (Sff(A )/ Sq ) ( W p  I/ 6r )  

+ (sH(A)/sr)(sH(CL)/sq)lx. 
The same equation with H ( A )  = In(a(A)), where a ( A )  is the scattering coefficient of 
the isospectral problem, was obtained by Giachetti and Johnson [ 171. 

4.2. The Jaulent-Miodek ( J M )  hierarchy 

Consider the isospectral problem [ 191 

y,, + ( A Z  - A q  - r ) y  = 0 

that can be reduced to the model ones defined by (2.16) and (2.17) with 

U = ( q A  + r - A ’)f+ e. 

To derive the corresponding hierarchy (1.2) we take the solution of (2.20) V =  
a h + b e + c j  Then 

ax = c + ( A 2  - q A  - r ) b  

b, = - 2 ~  (4.13) 

c, = 2( q A  + r - A * )a  

and 
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Therefore the J M  hierarchy (4.1 5 )  takes the following Hamiltonian form: 

where 

0 
2a -2aR(q)  

J = [  

We observe that 

A J ( (  U, dU/dq) ,  (V, a U / a r ) )  = AJ(bA, b )  = (2Abx, 2A2bx -2Aqbx -Aqxb) .  

Comparing the above equation with (4.14) we see that (3.15) holds with k = 1. Thus 
from (3.17) we deduce that 

{ H ( A ) ,  H ( P ) } =  ( (V(A),  V ( P ) ) / ( P  - A ) + ( V ( A ) ,  A ( P ) / P ) ) ~  

= ( [ 2 a ( A ) a ( ~ ) + b ( A ) c ( ~ l . ) + b ( ~ ) ~ ( A ) l / ( ~  - A )  

+b(A)bhLL)(A+I-L-q)}x 
which shows that each equation of the J M  hierarchy is a Liouville integrable Hamiltonian 
equation. 

5. Yang hierarchy 

In a beautiful paper [20 ]  Yang investigated the problem 

where Q1, Q2,  Q3 are symmetric N x N matrices and Z is the identity matrix of order 
N. The classical Sturm-Liouville theory on the spectral problem (-a2+ ti)+ = A +  was 
successfully extended by Yang to deal with the spectral problem (5.1). 

Equation ( 5 . 1 )  can be written as (2.16) by taking 

We shall discuss only the simple case N = 1 .  In this case we set Q2 = -s, Q3 = - r  - q, 
Q 1 = r - q .  Then 

( q + r ) + A ) .  - S  

S 

( ( r  - 9)- A 

Taking now G = sl(2) with the base 

e l = [ l  0 1  0 ]  e . = [  O ‘ 1  e 3 = [ ’  ‘1. 
-1 0 0 -1 

We have 

[ e l ,  e21 = -2e3 re i ,  % I  = -2e2 [e2,  e31 = -2ei 

( e l ,  e , )  = ( e 3 ,  e3) = -(e2, e2) = 2 

[ a ’ e 3 + b ’ e z + c ’ e l ,  ae3+ b e z + c e l ]  = 2 ( ( a ‘ b -  b ’ a ) e , + ( a ’ c - c ‘ a ) e , + ( b ’ c - c ’ b ) e 3 )  
(5 .2 )  
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and 
U = Ae2 + qez + re, + se3. 

Let 
V =  ae3+ be2+ ce, 

be a solution of (2.20). Then by (5.2) we obtain 

aX=2hc+2(qc-rb)  

b, = 2(sc - r a )  

C, = -2ha + 2(sb - 9a)  

(5.3) 

(5.4) 

( 5 . 5 )  

or 
2c,+, = a,,, - 2912, +2rb, 

2a,+l= -cnX -290, +2sb, (5.6) 

b,, = 2sc, - 2ra, 

from which we calculate successively that 

co=ao=O bo = p = constant (5.7a) 

c,  = pr  a,  = ps bl=O (5.76) 

c2 = (P/2) (sx  -2qr) a2= (P/2)(-rx  -29s) b2= ( p / 2 ) ( s 2 +  r 2 )  (5.7c) 

c3 = (p/4)(-rx. - 4qs, - 29,s +4q2r +2rs2+ 2r3) 

a3 = (p/4)( -sxx +4qr, + 29,r + 4q2r + 2sr2 + 2s3) 

b3 = (p /4)[2rsx  -2sr, -4q(s2+ r*)] .  

By proposition 9 we assert that all ai ,  bi, ci ( i a 0 )  are local. 

( 5 . 7 d )  

To find the corresponding hierarchy we proceed as follows: 

[ p ( U ( p ) -  U ( A ) ) / ( p  - A ) ,  V ( p ) 1 = [ ~ ~ 2 7  a'e3+c'e11= -2w'e l+2pc 'e3 .  ( 5 . 8 )  

Since the right-hand side of ( 5 . 8 )  does not contain a temfe, as needed to keep balance 
with U,, we introduce 

A b )  = +)e2 

for which it holds that 

A: - [ U, A'] = 6:e2+2r S'e3 -2s S'e,. 

By theorem 3 the hierarchy is then 

91 = 8: r, = -2pa' - 2sS' s, = 2pc'+ 2rS'. 

In a similar way as in the case of the GJ hierarchy we take S ' =  pb'. Then by ( 5 . 5 )  

S: = pb: = 2pb: + 2pra' - 2psc' 

and we obtain the desired Yang hierarchy: 

9, = 2pb: + 2pra' - 2psc' 

or 

4,. = 2bn+,x +2ra,+l- 2scn+, 

r, = -2pa'+ 2spb' s, =2pct-2rpb'  

rln = -2a,+, +2sb,+, sln = 2c,+, - 2rb,+,. 
(5.9) 
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To write (5.9) in their Hamiltonian form we note that 

( V, a U/a A )  = ( ae3 + be2 + ce, , e2) = -2 b 

( V ,  a u / a q >  = ( V ,  e2) = -2b 

( V ,  a U l a r )  = 2c ( V, a U / & )  = 2a. 

By the trace identity we then obtain 

(6 /6q ,  6/6r,  6 / 6 s ) ( - 2 b )  = (A-Y(a/aA)AY)(-2b,  2c, 2 a )  

or 

( 6 / 6 ~ ) ( - 2 6 n + , )  = ( ~ - n ) ( - 2 b n , 2 c n ,  2an)T (5.10) 

where U = ( q ,  r, s ) ~ .  To  fix the constant y we simply set n = O  in (5.10) and find 
0 = y(  -2p, 0,O). Therefore y = 0 and we conclude that 

( 6 / S ~ ) H , = ( - 2 6 , ,  2 ~ , , , 2 ~ , , ) ~  H,, = 26,,+,/ n. (5 .11 )  

According to the scheme suggested by theorem 7 ,  it remains only to find a symplectic 

AkJ(-2b, 2c, 2 a )  =(2A6,+2Ara-ZAsc, 2shb-2Aa, 2Ac-2rAb). 

operator J such that 

(5.12) 

The operator J satisfying (5.12) with k = 1 is easily seen to be 

J = ( - ;  -a --s -a). r 

From (5.9), ( 5 . 1 1 )  and (5.12) we see that the Yang hierarchy (5.9) takes the form 

ut,? = JaHn+,/Su (5.13) 

which is Liouville integrable by theorem 7,  and since all ai,  bi and ci are local as shown 
above, the hierarchy (5 .13 )  is pure differential. 

To write explicitly formula (3.17) we have 

( V ( A ) ,  V ( p ) )  = (ae3 + be2 + ce,, a’e,  + b’e2 + c’e,) = 2( aa‘ - bb’+ cc’) 

( V ( A ) ,  A (p ) )=(ae3+be2+ce , ,  pb‘e2)=-2pbb’. 

Thus 

{ H ( A ) ,  H ( p ) }  = [2( UU’ - bb’ + CC’) /  ( p  - A )  - 2bb‘],. 

As a final remark we mention that the explicit expression P(A ,  p ) ,  appearing in 
(3.17) for Poisson brackets { H ( h ) ,  H ( p ) }  = ( P ( A ,  P ) ) ~ ,  is not important in the present 
case of infinite-dimensional Hamiltonian equations. However, it plays an important 
role in the study of finite-dimensional integrable systems. In a subsequent paper [21] 
we have proved that, if the non-stationary equation U, - V, + [ U, VI = 0 is Liouville 
integrable, then the stationary equations (2.20) V, = [ U ,  VI are finite-dimensional 
Hamiltonian systems that are complete integrable in the strict Liouville sense. In the 
search for constants of motion of such systems, the explicit expression P(A,  p )  men- 
tioned above then plays an essential role. 
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